If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7w^2+10w=-3
We move all terms to the left:
7w^2+10w-(-3)=0
We add all the numbers together, and all the variables
7w^2+10w+3=0
a = 7; b = 10; c = +3;
Δ = b2-4ac
Δ = 102-4·7·3
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-4}{2*7}=\frac{-14}{14} =-1 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+4}{2*7}=\frac{-6}{14} =-3/7 $
| -6w-12=-6 | | 3-(8x-5)+(6-7x)+3=7x-(5x+9-3) | | 7p+15=-13 | | 6x−39=−2x+81 | | 122n-5+43=5n6-32 | | d/4+7/8=6 | | n-9=-9+n | | 2a(12)=24 | | 5x-7=8-8x | | 4b+2=2-b+4 | | -3(1-3k)=-3(1+7k) | | -(47-7d)=-49 | | (X-4)(2x+18)=0 | | 27p^2-10p+27=0 | | 11x-1/8=-7 | | 56,1+3x+2=111,9 | | s=14*2 | | 10p-4(p-7)=42= | | -30-5m=3+6(-2m-2) | | 18-r=-42 | | x^2–18x+81=4 | | x2–18x+81=4 | | -1=-2|y|–9 | | 2(x+7)=6x+9−4x | | 2(3x-1)+7=8x-(3-2x) | | 9/x=4/3x+1 | | -2=d8 | | 2/5(x+40)=-4 | | -2/5r+2r=1/2r-11/2 | | 3(4x-2.5)=5x-7.5 | | 2-x*3+30=24 | | |2x-11|=19 |